A note on quadratic fields in which a fixed prime number splits completely

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on 3-Prime cordial graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

A note on generators of number fields

We establish upper bounds for the smallest height of a generator of a number field k over the rational field Q. Our first bound applies to all number fields k having at least one real embedding. We also give a second conditional result for all number fields k such that the Dedekind zeta-function associated to the Galois closure of k/Q satisfies GRH. This provides a partial answer to a question ...

متن کامل

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

Note on the Prime Number Theorem

Proof. First of all, we prove that if pn is the nth prime number then we have that pn ≤ 2 n−1 . Since there must be some pn+1 dividing the number p1p2 · · · pn− 1 and not exceeding it, it follows from the induction step that pn+1 ≤ 2 0 2 1 · · · 22n−1 = 220+21+···+2n−1 ≤ 22n . If x ≥ 2 is some real number, then we select the largest natural number n satisfying 22n−1 ≤ x, so that we have that 2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1985

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000021498